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ABSTRACT: Nakagami distribution is a flexible life time distribution that can be used in the analysis of lifetime data and in 

problems related to the modeling of failure processes. It has applications in attenuation of wireless signals traversing multiple 

paths, deriving unit hydrographs in hydrology, medical imaging studies etc. We have considered different priors for the 

analysis of the scale parameter of Nakagami distribution under various loss functions. It has been assessed that the 

performance of inverse gamma prior is better than uniform prior and weighted balanced loss function (WBLF) performs the 

best among all loss functions. 

 

1. INTRODUCTION 
Nakagami distribution can be considered as a flexible life 

time distribution. It was primarily proposed for modeling the 

fading of radio signals. Although, the model may also offer a 

good fit to some failure time data. It has been used to model 

attenuation of wireless signals traversing multiple paths. The 

Nakgami distribution is comprehensively used to model the 

fading of radio signals and other areas of communicational 

engineering. It may also be used in hydrology in order to 

derive the unit hydrographs. The applications of the 

distribution can also be found in medical imaging studies to 

model the ultrasounds especially in Echo (heart efficiency 

test) and in modeling high-frequency seismogram envelopes. 

The distribution may also be employed to model failure times 

of a variety of products (and electrical components) such as 

ball bearing, vacuum tubes, electrical insulation. It is also 

widely considered in biomedical fields, such as to model the 

time to the occurrence of tumors and appearance of lung 

cancer. This distribution is extensively used in reliability 

theory, reliability engineering and to model the constant 

hazard rate portion because of its memory less property. 

Moreover, it is very convenient because it is so simple to add 

failure rates in a reliability model. 

In physics, if we observe a gas at a fixed temperature and 

pressure in a uniform gravitational field, then the height of 

the various molecules can be modeled by a Nakagami 

distribution. Interestingly, the Nakagami distribution is the 

best distribution to check the reliability of electrical 

components as compare to the Gamma, Weibull and 

lognormal distribution.  

1.1  Probability Density Function of Nakagami 

Distribution 

The probability density function of the distribution is given 

as: 
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Where,  > 0.5 is the shape parameter and  > 0 is scale 

parameter. It collapses to Rayleigh distribution when  =1 

and half normal distribution  =0.5. 

Much work has been made on Nakagami distribution. The 

use of the distribution can be seen in a number of scientific 

fields including Telecommunication Engineering and medical 

research. Some of the researchers have used this distribution 

to model attenuation of wireless signals traversing multiple 

paths, bit error rate (BER) performance of an M-branch 

maximal-ratio combiner (MRC), spatial-chromatic 

distribution of images, multipath faded envelope in wireless 

channels, vivo breast data, multimedia and ultrasound data in 

medical imaging studies. The real life applications of the 

distribution can be found from the contributions of: [1, 2,3, 4, 

5]. The Nakagami distribution has remained under the 

consideration of the classical statisticians. The significant 

piece of work, on the distribution, has been done under 

frequentist approach such as maximum-likelihood estimation, 

direct-sum decomposition principle, correlated Nakagami 

process, probability density function of the sum and the 

difference of two correlated squared Nakagami variates, 

backscatter analysis based on generalized entropies and 

neural function approximation, compressed logarithmic 

computation and bootstrap bias-corrected maximum 

likelihood estimation. Some important contributions in this 

regard are as follow: [6,7,8, 9, 10, 11,12].  

However, the Nakagami distribution has not been considered 

frequently for the analysis under the Bayesian framework. 

Therefore, we have considered the Bayesian analysis of the 

distribution under different priors and loss functions in order 

to find the most appropriate combination of loss function and 

prior for the estimation of the scale parameter of the 

distribution. 

The authors considering the Bayesian analysis of the 

probability distributions include: [13, 14, 15, 16, 17]. 

 

2. MATERIAL AND METHODS 
This section covers the material and methods for the study. 

2.1 Informative and Uninformative Priors 

Following informative and non-informative priors have been 

used for analysis of the scale parameter of the Nakagami 

distribution. 

2.1.1 Inverse Gamma Prior 

The inverse gamma can be presented as: 
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2.1.2 Uniform Prior 

One of the most famous non-informative priors is a uniform 

prior, it can be given as: 

 P K 
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2.2 Derivation Of Posterior Estimates 

This section contains the derivation of the Bayes estimators 

and posterior risks under different priors and loss functions. 

2.2.1 Joint Distribution of the Sample and Scale 

Parameter Θ 

The likelihood function of Nakagami distribution 
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2.2.2 Posterior Distribution using Uniform Prior 

 

The posterior distribution under the assumption of 

Uniform prior is:  
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2.2.3 Bayesian Estimation under Three Loss Functions 

In Bayesian analysis the comparisons among different 

estimators are made on the basis of loss functions. We have 

used following loss functions for the derivations of Bayes 

estimates and corresponding posterior risks. Further, we find 

below some important results that are needed for the 

derivation of Bayes and posterior risks under various loss 

functions. 
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2.2.3.1 Weighted Loss Function (WLF) 

The formulas for Bayes estimate and corresponding posterior 

risk under WLF are as under: 

The Bayes estimator under WLF is: 
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The posterior risk of the Bayes estimator under WLF is: 
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2.2.3.2 Weighted Balanced Loss Function (WBLF) 

The Weighted Balanced loss function is defined 

as:  
2

, WBLF
WBLF

WBLF

L
 

 


 
  
 

  

The formulas for Bayes estimate and corresponding posterior 

risk under WBLF are as under: 

The Bayes estimator under WBLF is:  
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The Bayes risk under WBLF is:   
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2.2.3.3 Precautionary Loss Function (PLF) 

The precautionary loss function (PLF) can be presented as:  
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The formulas for Bayes estimate and corresponding posterior 

risk under PLF are as under: 

The Bayes estimator under PLF is:   
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The posterior risk of the Bayes estimator under PLF is: 
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The Bayesian estimates under inverse gamma prior can be 

obtained with little modifications. 

 

3. RESULTS AND DISCUSSIONS 
A simulation study has been conducted to evaluate the 

behavior and performance of different estimators. A 

comparison in terms of magnitude of posterior risks is needed 

to check whether an estimator is inadmissible under some 

loss function or prior distribution. The samples have been 

simulated for n = 5, 20, 40, 100, 150, 250 and 400 

using  
       

       

1,0.5 , 1,1 , 1,1.5 , 1,2 ,
,

2,0.5 , 2,1 , 2,1.5 , 2,2
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Table 3.1.1:  Bayesian estimates under uniform prior using WLF 

n 
λ= 1,     

 θ = 0.5 

λ= 1,           

θ = 1 

λ= 1,     

θ = 1.5 

λ= 1,       θ 

= 2 

λ= 2,           

θ = 0.5 

λ= 2,          

θ = 1 

λ= 2,           θ 

= 1.5 

λ= 2,        θ 

= 2 

5 0.8280 1.6922 2.4869 3.2906 0.6287 1.2511 1.8676 2.5011 

20 0.5534 1.1337 1.6556 2.1870 0.5268 1.0450 1.6103 2.1047 

40 0.5235 1.0710 1.5738 2.0744 0.5130 1.0226 1.5659 2.0451 

100 0.5078 1.0392 1.5253 2.0125 0.5058 1.0057 1.5391 2.0154 

150 0.5035 1.0304 1.5149 1.9993 0.5039 1.0019 1.5344 2.0101 

250 0.5022 1.0272 1.5072 1.9853 0.5027 1.0000 1.5301 2.0060 

400 0.5003 1.0238 1.5001 1.9811 0.5021 0.9982 1.5285 2.0026 
 

Table 3.1.2:  Bayesian estimates under uniform prior using WBLF 

n 
λ= 1, 

θ = 0.5 

λ= 1,           

θ = 1 

λ= 1, 

θ = 1.5 

λ= 1,       θ 

= 2 

λ= 2, 

θ = 0.5 

λ= 2,          

θ = 1 

λ= 2,           θ 

= 1.5 

λ= 2,        θ 

= 2 

5 0.4968 1.0153 1.4921 1.9744 0.5029 1.0008 1.4941 2.0008 

20 0.4980 1.0203 1.4900 1.9683 0.5005 0.9927 1.5297 1.9995 

40 0.4973 1.0175 1.4951 1.9707 0.5002 0.9971 1.5268 1.9940 

100 0.4976 1.0184 1.4948 1.9723 0.5007 0.9956 1.5237 1.9952 

150 0.4968 1.0167 1.4947 1.9726 0.5005 0.9952 1.5241 1.9967 

250 0.4982 1.0190 1.4951 1.9694 0.5007 0.9960 1.5240 1.9980 

400 0.4978 1.0187 1.4926 1.9712 0.5009 0.9957 1.5246 1.9976 

 

Table 3.1.3:  Bayesian estimates under uniform prior using PLF 

n 
λ= 1,     

 θ = 0.5 

λ= 1,           

θ = 1 

λ= 1,       

θ = 1.5 

λ= 1,       θ 

= 2 

λ= 2,          θ 

= 0.5 

λ= 2,          

θ = 1 

λ= 2,           θ 

= 1.5 

λ= 2,        θ 

= 2 

5 1.0141 2.0725 3.0458 4.0301 0.6721 1.3374 1.9966 2.6737 

20 0.5694 1.1665 1.7036 2.2504 0.5339 1.0590 1.6319 2.1329 

40 0.5305 1.0854 1.5949 2.1022 0.5163 1.0293 1.5760 2.0584 

100 0.5104 1.0445 1.5332 2.0229 0.5071 1.0083 1.5430 2.0205 

150 0.5052 1.0339 1.5201 2.0061 0.5047 1.0035 1.5369 2.0135 

250 0.5032 1.0293 1.5102 1.9893 0.5032 1.0010 1.5317 2.0081 

400 0.5009 1.0251 1.5020 1.9836 0.5025 0.9988 1.5294 2.0039 

 

Table 3.1.2 :  Posterior Risks under uniform prior using WLF 

n 
λ= 1, 

θ = 0.5 

λ= 1,           

θ = 1 

λ= 1, 

θ = 1.5 

λ= 1,       θ 

= 2 

λ= 2,           

θ = 0.5 

λ= 2,          

θ = 1 

λ= 2,           θ 

= 1.5 

λ= 2,        θ 

= 2 

5 0.0966 0.2194 0.2890 0.2974 0.0599 0.1068 0.5289 0.1490 

20 0.0182 0.0765 0.1634 0.2850 0.0074 0.0292 0.0692 0.1185 

40 0.0073 0.0307 0.0662 0.1151 0.0033 0.0133 0.0311 0.0531 

100 0.0026 0.0109 0.0234 0.0407 0.0013 0.0050 0.0117 0.0200 

150 0.0017 0.0070 0.0152 0.0264 0.0008 0.0033 0.0077 0.0132 

250 0.0010 0.0041 0.0089 0.0155 0.0005 0.0019 0.0046 0.0078 

400 0.0006 0.0026 0.0055 0.0096 0.0003 0.0012 0.0028 0.0049 

 

Table 3.1.5 :  Posterior Risks under uniform prior using WBLF 

n 
λ= 1, 

θ = 0.5 

λ= 1,           

θ = 1 

λ= 1, 

θ = 1.5 

λ= 1,       θ 

= 2 

λ= 2,          θ = 

0.5 

λ= 2,          

θ = 1 

λ= 2,           θ 

= 1.5 

λ= 2,        θ 

= 2 

5 0.0567 0.0853 0.0784 0.1077 0.0132 0.0263 0.0393 0.0526 

20 0.0105 0.0215 0.0313 0.0414 0.0046 0.0092 0.0141 0.0184 

40 0.0046 0.0094 0.0138 0.0182 0.0022 0.0043 0.0066 0.0086 

100 0.0017 0.0035 0.0051 0.0068 0.0008 0.0017 0.0025 0.0033 

150 0.0011 0.0023 0.0034 0.0044 0.0006 0.0010 0.0017 0.0022 

250 0.0007 0.0014 0.0020 0.0026 0.0003 0.0006 0.0010 0.0013 

400 0.0004 0.0008 0.0012 0.0016 0.0002 0.0003 0.0006 0.0007 
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Table 3.1.6 :  Posterior Risks under uniform prior using PLF 

n 
λ= 1, 

θ = 0.5 

λ= 1,           

θ = 1 

λ= 1,        

 θ = 1.5 

λ= 1,       θ 

= 2 

λ= 2,          θ 

= 0.5 

λ= 2,          

θ = 1 

λ= 2,           θ 

= 1.5 

λ= 2,        θ 

= 2 

5 0.1825 0.3730 0.5482 0.7254 0.0426 0.0847 0.1265 0.1694 

20 0.0157 0.0322 0.0471 0.0622 0.0069 0.0138 0.0212 0.0277 

40 0.0069 0.0141 0.0207 0.0273 0.0033 0.0065 0.0099 0.0130 

100 0.0026 0.0052 0.0077 0.0102 0.0013 0.0025 0.0038 0.0050 

150 0.0017 0.0034 0.0050 0.0067 0.0008 0.0016 0.0025 0.0033 

250 0.0011 0.0020 0.0030 0.0039 0.0005 0.0010 0.0015 0.0020 

400 0.0006 0.0013 0.0019 0.0024 0.0003 0.0005 0.0009 0.0012 

 

Table 3.2.3:  Bayesian estimates under inverse gamma prior using WLF 

n 
λ= 1.                                   

θ = 0.5 

λ= 1,       

θ = 1 

λ= 1,            

θ = 1.5 

λ= 1, 

θ = 2 

λ= 2, 

θ = 0.5 

λ= 2,     

θ = 1 

λ= 2, 

θ = 1.5 

λ= 2, 

θ = 2 

5 0.6987 1.2263 1.6973 2.1737 0.6012 1.0999 1.5934 2.0996 

20 0.5496 1.0735 1.5532 2.0260 0.5278 1.0271 1.5169 2.0326 

40 0.5250 1.0471 1.5231 2.0123 0.5155 1.0133 1.5113 2.0194 

100 0.5100 1.0332 1.5106 1.9867 0.5081 1.0044 1.4994 2.0092 

150 0.5064 1.0285 1.5061 1.9870 0.5061 1.0044 1.4980 2.0093 

250 0.5036 1.0258 1.5039 1.9802 0.5047 1.0016 1.4975 2.0069 

400 0.5020 1.0257 1.5029 1.9812 0.5042 1.0006 1.4960 2.0072 

 

Table 3.2.2:  Bayesian estimates under inverse gamma prior using WBLF 

n 
λ= 1.                           

θ = 0.5 

λ= 1,        θ 

= 1 

λ= 1, 

θ = 1.5 

λ= 1,       θ 

= 2 

λ= 2,         θ 

= 0.5 

λ= 2,       θ 

= 1 

λ= 2,          θ 

= 1.5 

λ= 2,         θ 

= 2 

5 0.4991 0.8759 1.2124 1.5527 0.5010 0.9166 1.3278 1.7497 

20 0.4997 0.9760 1.4120 1.8418 0.5026 0.9782 1.4447 1.9358 

40 0.5000 0.9972 1.4506 1.9165 0.5029 0.9886 1.4744 1.9702 

100 0.5000 1.0129 1.4810 1.9477 0.5030 0.9944 1.4845 1.9893 

150 0.4997 1.0149 1.4863 1.9608 0.5027 0.9978 1.4881 1.9960 

250 0.4996 1.0176 1.4920 1.9645 0.5026 0.9976 1.4915 1.9989 

400 0.4995 1.0206 1.4954 1.9714 0.5029 0.9981 1.4923 2.0022 

 

Table 3.2.3:  Bayesian estimates under inverse gamma prior using PLF 

n 
λ= 1,                          

θ = 0.5 

λ= 1,        θ 

= 1 

λ= 1,          θ 

= 1.5 

λ= 1,        

θ = 2 

λ= 2,          

θ = 0.5 

λ= 2,        

θ = 1 

λ= 2,        θ 

= 1.5 

λ= 2,       

θ = 2 

5 0.7812 1.3710 1.8977 2.4303 0.6338 1.1594 1.6796 2.2132 

20 0.5639 1.1014 1.5935 2.0786 0.5345 1.0402 1.5362 2.0585 

40 0.5317 1.0604 1.5425 2.0380 0.5188 1.0197 1.5208 2.0322 

100 0.5126 1.0384 1.5182 1.9967 0.5094 1.0069 1.5032 2.0143 

150 0.5081 1.0319 1.5111 1.9936 0.5069 1.0061 1.5005 2.0127 

250 0.5046 1.0278 1.5070 1.9842 0.5052 1.0026 1.4990 2.0089 

400 0.5026 1.0270 1.5048 1.9837 0.5045 1.0013 1.4969 2.0085 

 

Table 3.2.4:  Posterior Risks under Inverse Gamma Prior Using WLF 

n 
λ= 1,       θ 

= 0.5 

λ= 1,      

θ = 1 

λ= 1,         

θ = 1.5 

λ= 1,      θ = 

2 

λ= 2,        θ = 

0.5 

λ= 2,        θ 

= 1 

λ= 2,         

θ = 1.5 

λ= 2,          θ 

= 2 

5 0.0785 0.2005 0.1972 0.2180 0.0556 0.0991 0.2939 0.1126 

20 0.0159 0.0606 0.1271 0.2165 0.0070 0.0265 0.0579 0.1040 

40 0.0069 0.0275 0.0583 0.1017 0.0026 0.0126 0.0280 0.0501 

100 0.0025 0.0104 0.0223 0.0385 0.0012 0.0049 0.0109 0.0195 

150 0.0016 0.0068 0.0147 0.0255 0.0007 0.0032 0.0072 0.0130 

250 0.0009 0.0040 0.0087 0.0151 0.0004 0.0018 0.0043 0.0077 

400 0.0006 0.0025 0.0054 0.0094 0.0003 0.0011 0.0027 0.0048 
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Table 3.2.5:  Posterior Risks under Inverse Gamma Prior Using WBLF 

n 
λ= 1,       

θ = 0.5 

λ= 1, 

θ = 1 

λ= 1, 

θ = 1.5 

λ= 1,       

θ = 2 

λ= 2, 

θ = 0.5 

λ= 2,      

θ = 1 

λ= 2,          

θ = 1.5 

λ= 2,       

θ = 2 

5 0.0539 0.0810 0.0745 0.1023 0.0125 0.0250 0.0373 0.0500 

20 0.0100 0.0204 0.0297 0.0393 0.0044 0.0087 0.0134 0.0175 

40 0.0044 0.0089 0.0131 0.0173 0.0021 0.0041 0.0063 0.0082 

100 0.0016 0.0033 0.0048 0.0065 0.0008 0.0016 0.0024 0.0031 

150 0.0010 0.0022 0.0032 0.0042 0.0006 0.0010 0.0016 0.0021 

250 0.0006 0.0012 0.0017 0.0023 0.0003 0.0005 0.0009 0.0011 

400 0.0003 0.0007 0.0010 0.0014 0.0002 0.0003 0.0005 0.0006 

 

Table 3.2.6:  Posterior Risks under Inverse Gamma Prior Using PLF 

n 
λ= 1,        

θ = 0.5 

λ= 1,         θ 

= 1 

λ= 1,         

θ = 1.5 

λ= 1,        

θ = 2 

λ= 2,         

θ = 0.5 

λ= 2,        

θ = 1 

λ= 2,         θ 

= 1.5 

λ= 2,        

θ = 2 

5 0.1633 0.2866 0.3967 0.5080 0.0344 0.0782 0.1006 0.1249 

20 0.0140 0.0247 0.0341 0.0436 0.0056 0.0127 0.0169 0.0204 

40 0.0062 0.0108 0.0150 0.0191 0.0027 0.0060 0.0079 0.0096 

100 0.0023 0.0040 0.0056 0.0071 0.0010 0.0023 0.0030 0.0037 

150 0.0015 0.0026 0.0036 0.0047 0.0006 0.0015 0.0020 0.0024 

250 0.0010 0.0015 0.0022 0.0027 0.0004 0.0009 0.0012 0.0015 

400 0.0005 0.0010 0.0014 0.0017 0.0002 0.0005 0.0007 0.0009 

 

 

1000 replications. The resultant Bayes estimates and posterior 

risks under different priors and loss functions are presented in 

the tables below.  

3.1 Simulation Results for Bayesian Estimates under 

Uniform Prior 

The Bayesian estimates and their posterior risks under 

uniform prior are presented in the following tables. 

3.2 Simulation Results for Bayesian Estimates under 

Inverse Gamma Prior 

The Bayesian estimates and their posterior risks under inverse 

gamma prior are presented in the following tables. 

 

4. CONCLUSION 
Nakagami distribution has a wide range of applications in 

communicational engineering and medical studies. A number 

of contributions of Nakagami distribution appear in classical 

statistics. In this paper, the Bayesian estimators of the scale 

parameter of Nakagami distribution are obtained. We have 

considered the uniform and inverse gamma priors for the 

derivation of the posterior distribution of mentioned 

parameter. The three loss functions namely weighted loss 

function; weighted balanced loss function and precautionary 

loss function have been used for estimation. The performance 

of an estimator is assessed on the basis of its relative 

posterior risk. The Monte Carlo Simulations are used to 

compare the performance of the estimators. The salient 

results of this analysis are as follow. 

4.1 Sample Size 

The posterior risks based on both priors and for all loss 

functions, relating to the scale parameter of a Nakagami 

distribution, expectedly decrease with the increase in sample 

size. 

4.2 Convergence of Bayes Estimates 

The Bayes estimates tend to be close to the original values as 

sample size increases. Hence the Bayes estimates are 

consistent which is in accordance with the theory. 

4.3 Posterior Risks 

The magnitude of the posterior risks is directly proportional 

to the true parametric values, while it is inversely 

proportional to the sample size. This property is common 

under all priors and all loss functions. The amounts of 

posterior risks are smaller for greater values of the shape 

parameters of the Nakagami distribution (keeping the values 

of the scale parameter specified).  

4.4 Priors  

Using the uniform prior, the posterior risk increases with 

increase in the value of θ whatever the value of λ may be. At 

the same level of θ, the posterior risk decreases for Nakagami 

distribution with a larger λ. On using the Inverse Gamma 

Prior with the hyper parameters taking the values b = 1 & c = 

2, b = 0.5 & c = 3 and b = 3 & c = 0.5, and fixed λ, it is found 

that the posterior risk increases when the Bayesian estimator 

of a larger scale parameter is needed. For the same unknown 

θ value, the posterior risk decreases for Nakagami 

distribution with a larger λ. These patterns are similar under 

each loss function. In comparison of priors it can be assessed 

that the performance of inverse gamma prior is better than 

that of uniform prior. 

4.5 Loss Functions 

The Bayes estimates are consistent under each loss function. 

However, the estimates under WBLF are associated with 

least amounts of posterior risks under each prior.  

4.6 Final Remark 

On the basis of above analysis it can be concluded that in 

order to estimate the parameter of Nakagami distribution 

under Bayesian framework, the use of inverse gamma prior 

under WBLF loss function can be preferred. The results are 

useful for the analysts looking to analyze the lifetime data 
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and attenuation of wireless signals traversing multiple paths, 

deriving unit hydrographs in hydrology, medical imaging 

studies etc using Nakagami distribution under a Bayesian 

framework. 
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